
Leysia Palen a, Sarah Vieweg b & Kenneth Mark Anderson a

a Department of Computer Science, University of Colorado, Boulder, Colorado, USA
b Alliance for Technology, Learning and Society (ATLAS) Institute, University of Colorado, Boulder, Colorado, USA

To link to this article: http://dx.doi.org/10.1080/01972243.2011.534370

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Leysia Palen
Department of Computer Science, University of Colorado, Boulder, Colorado, USA

Sarah Vieweg
Alliance for Technology, Learning and Society (ATLAS) Institute, University of Colorado, Boulder, Colorado, USA

Kenneth Mark Anderson
Department of Computer Science, University of Colorado, Boulder, Colorado, USA

The need for quick, timely, and accurate information is critical in emergency events. During mass emergencies, people assemble information from both official and unofficial sources. As digital access expands, people will increasingly incorporate information from digital sources into decision making and assess it against the local circumstances they experience. If we extrapolate what such behavior means for the future, we can see that information management under emergency conditions will need to become increasingly socially distributed. The key question then is how to assess the quality of information: how “good” or “bad” it is; whether it is “misinformation” or “disinformation.” Borrowing from Simon’s notion of satisficing, the authors argue that people’s assessment of information helpfulness and credibility is a function of the “everyday analytic” skills they employ during mass emergencies. To facilitate the critical work of “everyday analysts,” we outline a research agenda for the development of analytical support tools.

Conditions of mass emergency are marked by intensified information search (Turner 1990; Dynes and Tierney 1994), offerings of assistance, and the rise of an “altruistic community” (Drabek and McEntire 2003). People supplement information from official sources with information from friends, family, neighbors, and increasingly online grassroots sources (Drabek 1986; Schneider and Foot 2002; Hagar and Haythornthwaite 2005; Sorenson and Sorenson 2006; Hagar 2009).

The expansion of the digital world and digital access through a growing array of personal information and computing technology (ICT) that includes “Web 2.0” or social media services and applications means that resources for seeking information and providing help during mass emergencies have also blossomed. Though accessing digital sources of information is undoubtedly growing, use of digital sources and digital communications is difficult to measure both during and across many mass emergency events: The pace of the events; diffuseness of affected populations; the vastness of the attendant, interested, but geographically remote populations; the differences in features across events; and rapid technological change itself make it difficult to know precisely to what degree social...
media is incorporated into on-the-ground decision making by members of the public.

However, based on many indications of digital expansion (mobile telephony diffusion, continued website proliferation, social networking site [SNS] growth and end-user innovation) and—critically—the sociotechnical innovativeness of computer-mediated communication (CMC) interactions, the use of digital media will continue to expand its role in emergency response activity. It is critical that we understand the nature of these information-sharing activities to shape the future where mass coordination will be more commonplace, so that such observations shape innovation, policy, and practice.

Here we consider the matter of assessment of information credibility and helpfulness as a function of the “everyday analytic” skills that people must employ to assess and take action in the face of emergency. We discuss how helpfulness is constructed between multiple actors in emergency situations as mediated through CMC. In safety- and time-critical situations, the major concern with respect to yielding some authoritative control to “crowd sourcing,” for example, is an unrealistic attachment to the ideal of accuracy. (Even in research communities that are attuned to the realities of human behavior in practice, we find this to be the case.) Our claim is that if we do not attend to our assumptions about information quality in time-critical, safety-critical, and information-impoverished situations, we restrict opportunities to work toward far better solutions than we otherwise could, and we impede progress in technical innovation, practice, and policy. These opportunities include supporting the “everyday analyst.”

HELP AND COMPUTER-MEDIATED COMMUNICATION

Related Research

“Help” has been a prevailing theme in computer-mediated communication since the dawn of the Internet (Kollock and Smith 1996). Pre-Web environments like Gopher and Usenet, the pre-Web rise of the practice of FAQ (frequently asked questions) creation, and other environments that thrived regionally such as Zephyr (Ackerman and Palen 1996) indicate that question-and-answer type interactions were important to the earliest forms of computer-mediated communications.

In the human-computer interaction (HCI) and computer-supported cooperative work (CSCW) literature, the notion of “help” has been examined in exchanges under nonemergency conditions and has centered on matters of expertise location (Ackerman and Malone 1990; Ackerman and McDonald 1996; Ackerman and Palen 1996; McDonald and Ackerman 1998; McDonald 2001; Zhang et al. 2007); recommender systems (Herlocker et al. 2004); suggestion systems (Cosley et al. 2007); collaborative filtering (Amento et al. 2003); collaborative and remote help-giving (Twidale et al. 1997; Twidale and Ruhleder 2004; Crabtree et al. 2006; Nam et al. 2009); and help in the achievement of knowledge management (Halverson 2004).

Online social support is another means of offering CMC-based help. People have long turned to the internet as a place to show and find support. They come together online to participate in social support communities for reasons that including sharing experiences and offering advice (Farnham et al. 2002; Pfeil 2007; Pfeil and Zaphiris 2007; Preece 2000). Similarly, Wellman (1996) explained how CMC environments in the mid-1990s support question and response exchanges, and, with colleagues in Wellman et al. (1996, 220), also pointed out that “despite the limited social presence of CMC, people find social support, companionship, and a sense of belonging...even when they are composed of persons they hardly know.” In addition, Maloney-Krichmar and Preece (2005) reported on a multiyear study that examined aspects of a popular online health community. Their work led to recommendations for those who develop, manage, and design such sites as they “improve the lives of people as they seek to cope with illness, disease, injuries and health concerns” (Maloney-Krichmar and Preece 2005). This sample of work on CMC-based help—whether for purposes of knowledge management, content or product recommendation, or seeking health and emotional support—summarizes how features of online forums can assist through enhanced knowledge, words of encouragement, or pointers to sources. However, a central matter is how we come to call these conditions “helpful.”

“Helpfulness” is not an inherent quality of information. Helpfulness is instead constructed by context, where consumers—and even providers—recognize, explicitly or otherwise, that it is often relative to what is needed. It is this point that is central to our understanding of helpfulness of information in mass emergency settings, and it positions how we might design for “everyday” analytical support for navigating and sifting through large amounts of quickly-generated CMC-based information sprawled across the net.

CMC Help in Emergencies

In mass emergencies, help comes from a variety of sources (including government agencies, public and private groups, and volunteers) and in both material (child care, food, medication) and nonmaterial (directions, warnings) forms.
The roles served by members of the public shift and change in quality because of changes in speed and reach of information production through ICT (Palen and Liu 2007). CMC-based emergency behavior has not yet become normative; rather, it is clearly evolving across disaster events (Liu et al. 2008; Palen and Vieweg 2008; Vieweg et al. 2008), with users of photo repository sites, microblogging applications, social networking sites, texting applications, blogs, and plain vanilla Web pages continuing to adapt and expand the tools and their behaviors over time.

We are at a critical juncture in our society: “Social media” and Web 2.0 interest will approach critical mass (if it has not already).1 In the emergency response arena, many grassroots efforts have been documented (Schneider and Foot 2002; Hagar and Haythornthwaite 2005; Palen and Liu 2007; Shneiderman and Preece 2007; Sutton et al. 2007; Torrey et al. 2007; Liu et al. 2008; Mark and Semaan 2008; Meier and Brodock 2008; Qu et al. 2008; Shklovski et al., 2010; Shklovski et al. 2008; Wu et al. 2008; Mark et al. 2009; Palen et al. 2009). We can expect ICT-abetted assistance to continue to grow at rates similar to the growth of Web 2.0 and social networking activity. In addition, in terms of formal inclusion, government agencies are beginning to seriously consider how to incorporate the use of the Web and social media services and applications in their public communications, though they struggle with what it means to do so for current and uncertain future situations. One example of current, new uses of social media by government agencies is the U.S. Centers for Disease Control’s social media tool suite for information about the H1N1 (swine flu) virus (CDC 2009).

CMC Helpfulness: What’s the Good, the Bad, and the Ugly?

However, an overarching concern about CMC-based communications in the emergency space remains: For information to be helpful, it must have some reliable degree of accuracy. But how does one judge information accuracy, especially under dangerous and threatening conditions, where the source might be something not immediately recognizable as authoritative? How do we—in practice and in theory—judge peer-generated information to be “good?” To what degree do we worry about “misinformation” or even “disinformation,” and how do we identify it, lest it damage our trust in the “good?”

These are questions at the core of all aspects of emergency response, and indeed, for any kind of inquiry about matters where answers are uncertain, but where individuals are in a position to nevertheless take some kind of action or remedy. For this particular domain of investigation, an understanding of “helpfulness” contributes to a range of concerns: individual behavior, agency behavior, and—critically to the matter of human-centered computing development concerns—design of technical solutions that assist people to sift through and make satisficing (Simon 1996), or locally optimal, judgments about information under pressures of uncertainty and time criticality—a clear case of bounded rationality in operation.

Our contribution in this paper focuses on a discussion of higher order features of CMC-produced information created under conditions of mass emergency, when the need for help is at a premium. With this, we take the discussion away from “good” and “bad” and show how actionable helpfulness is achievable through a range of features with respect to information and source. This also helps us think about how to collate information for future ICT systems, how to inject into CMC sources metadata that make these attributes more obvious and in general lend power to people by enhancing their abilities to be “everyday analysts.”

APPRAOCH

The discussion here is the result of having engaged with qualitative and quantitative matters of information generation and seeking over multiple mass emergency events in recent years including 2005’s Hurricane Katrina, the April 2007 Virginia Tech shootings, the October 2007 Southern California wildfires, the February 2008 Northern Illinois University shootings, and the March–April 2009 U.S. Red River Valley floods (Palen and Vieweg 2008; Shklovski et al. 2008; Palen et al. 2009; Starbird et al. 2010; Vieweg et al. 2010).

We restrict discussion to matters of mass emergency, rather than crises in general. Crisis includes a large number of events, both personal and shared, many of which we do not include (such as a personal crisis or an economic crisis). In this discussion on helpfulness, it is necessary to restrict ourselves to events that have constrained temporal and geographical extent (even if they are lengthy or broad) that affect large numbers of people and bring everyday life to a standstill. We also exclude pandemics. As we are learning in other related but still preliminary research, pandemics appear to have different information-production and -seeking activities, perhaps in part because of the stigma attached to embodying the invisible agent (the H1N1 virus for example); because of the prolonged latency of the hazard; and because much of social life is still running under so-called “normal” conditions. Therefore, here we discuss mass emergencies—large-scale events that affect a broad population, cover a focused geographical region, result in extensive damage to people and/or the built environment, and have sustained disruption to the social order. They can occur naturally, or be accidentally or deliberately instigated by human.
SHIFTING AWAY FROM “ACCURACY” AS A GOLD STANDARD

The task for a person affected by a regional emergency is one of assembling information from multiple sources (Sorenson and Sorenson 2006). This task has become increasingly burdensome—though possibly produces higher yield (Sutton et al. 2008)—because people now, in addition to attending to traditional media, often navigate new and information-flooded CMC forums under pressures of time and risk.

Accordingly, emergency response needs to move away from the traditional approach that sees information as something to control and carefully disseminate. We instead need a fundamentally different perspective that accepts that information gathering and processing activities must be more socially distributed. The task of the researcher should then be to facilitate this process, including by developing tools that support the everyday analysts during times of mass emergency. Such a view works from an understanding that people are already endowed with analytical abilities (Shapiro 1994) and that they optimize within a bounded rationality, even more so in times of mass emergency (Simon 1996). The mistake authorities and researchers often make when considering technology solutions in the emergency space is that the standard for helpful information must be “accuracy.”

Moreover, it is an impossible standard to attain under conditions of mass emergency, when broad swaths of populations, the environment, and property are often affected. This is true not only for members of the public, but also emergency management. Emergency managers are reluctant to release information that they cannot deem accurate. The risk in doing so is obvious; no one wants to be wrong and put people at additional risk. The problem is that emergency managers know that they themselves can only reach standards of satisficing when situation reporting and making determinations about the quality of information. It is an illusion to believe that anyone has perfectly accurate information in mass emergency and disaster situations to account for the whole of the event. If someone did, then the situation would not be a disaster or crisis.

Information processing during mass emergency can only satisfice because, as Simon explains, the “complexity of the environment is immensely greater than the computational powers of the adaptive system” (Simon 1996, 190). This bounded rationality is true for all aspects of human life; the problem during mass emergencies is that we tend to resist the idea even more. Such a view might be no surprise to those who study human-computer interaction issues for so-called “normal” conditions. We have found, however, that people who otherwise understand the challenges of managing uncertainty nevertheless apply different standards when planning for—and designing technology for—times of crisis. The gold standard of “accuracy” remains fixed, with few concessions for social cognition (Hutchins 1995) and collective intelligence (Hiltz and Turoff 1993). However, there is good reason to believe that information produced by members of the public is more accurate than we might presume (Palen et al. 2009). We therefore argue that ascertaining helpfulness is the primary operational issue, rather than accuracy.

CONSTRUCTING HELPFULNESS: INFORMATION OR SOURCE AS POINT OF ENTRY

Before helpfulness can be offered, judged, and acted on, people involved in mass emergency situations must first assess their situation. A prevailing condition during mass emergencies is lack of knowledge about the circumstances, which leads to ambiguity about what decisions to make and actions to take. As Landgren (2007) explains in his extension of Weick’s (1988) writings, people must overcome this sense of ambiguity if they are to act, and they do so by “actively transforming ambiguity into risk” (Landgren 2007, 50). Seeking and using CMC-based sources does two things: First, it goes toward translating ambiguity in the system into some form of risk assessment. In turn, the assessment of risk arms the seeker of knowledge in the heterogeneous array of CMC information with something to measure “found” information against, and to make local decisions with respect to helpfulness of that information.

The Seeker’s Orientation to Information versus Source

Historically, people have sought information from what we might call conventionally trusted sources: sources such as local emergency personnel or local media outlets, as well as from their neighbors and area friends and family (Sorenson and Sorenson 2006). With the advent of Web search, and the generation of CMC-produced information (though not necessarily “data”) from several and unknown sources, seekers often find that they have access to information first—rather than source first—and have to make differently engineered judgments about its viability.

The power of online search, where users can plug in a search query, results in numerous possibilities to investigate. People might search on a source name such as “Federal Emergency Management Agency,” in which case they might be led to FEMA’s official page. But they will also investigate based on partial information they have at hand, to locate, for example, where they can find goods
and services. Consider an example from the run up to Hurricane Gustav:

UserX City Network, August 30, 2008 16:42: Which Home Depot has the generators? Thanks!

UserY NearbyCity Network, August 30, 2008 16:49: I know Home Depot in Slidell has generators, or at least they did last night.

The orientation of the seeker here is to the information, with an apparent willingness to field answers from unknown sources. People will also look for information about details of impending hazards, such as the eyewitness location of a “fireline” or other situational indicator. For example, an analysis of Twitter activity during the March–April 2009 Red River Valley flooding in North America shows Twitter users referencing area buildings in their information relay:

I heard earlier that Hjemkomst Center had gotten water in the lowest level.

With such answers from unknown sources (who possibly cite other unknown sources), seekers must decide whether they will trust the information and/or the source, and what risks would be incurred if the information is incorrect.

Trust is a critical ingredient in the everyday analyst’s determination of the credibility and riskiness of information and sources. Grabner-Kräuter, Kaluscha, and Fladnitzer (2006, 236) write that “the need for trust only arises in a risky situation, therefore trust would not be needed if actions could be undertaken with complete certainty and no risk.” When considering emergencies, stakes are often quite high, so credibility must be established quickly, although often only partially, before one decides what to do (or not to do) with it. The achievement of trust is again a satisficing goal for the everyday analyst, especially without benefit of additional support to further verify information (see Discussion section for elaboration on this point).

Provider-Seeker Relationship in Trust Building: Seeker Inference and Recipient Design

Generation of trust in such settings depends on myriad factors. People must often make inferences from indicators that would suggest trustworthiness. Providers, if aware that they have an audience and understand the relationship between what they write and how it might be consumed—“recipient design” (Sacks et al. 1974)—might provide explicit indicators of credibility. Moreover, trust is not always generated simultaneously or with awareness of the parties involved. Though CMC-based information providers and seekers may not have intersubjective understandings on which information exchange can depend, some interplay exists between how information is understood and negotiated by both seekers and providers.

Therefore, in striving to make decisions, information seekers may rely upon sociotechnical affordances that lend themselves to displaying both direct and indirect offers of credibility. Sometimes the onus is on the reader or receiver of information to make inferences about the postings of others, particularly when those who post information do not (or cannot) take a larger audience into account. Information displayed in a public place may be of interest to the reader, or relate to his/her situation in some way, but it remains up to the reader to assess its credibility.

However, some providers of information convey their awareness of the larger audience through the way in which they “design” their communications for their known, unknown or anticipated future recipients (Sacks et al. 1974). Word choice, reference to sources, and other tactics can all serve as indicators of credibility.

CHARACTERISTICS FOR JUDGING HELPFULNESS

In this section, we discuss how features of computer-mediated communications are used to establish source-level credibility and information-level credibility as input to the everyday analyst. We also discuss how temporality figures into the assessment of helpfulness, especially in times of crisis. Finally, we consider how the absence or presence of unexpected information are characteristics of helpfulness.

Establishing Source-Level Credibility

Throughout our research, we see instances of people displaying trust-inducing behavior in the form of credentialing. Such behavior can be comprised of several components, which may be inferred by the audience or designed by the information provider. Examples include identifiable network affiliation, presentation of local knowledge, self-correction or hedging (i.e., stating information is uncertain, but believed to be correct), and words of support and encouragement.

Existing credentials. Information might be considered a “good” starting point if it is provided by a source that has been previously deemed credible by a seeker. Some providers of CMC-based information have preexisting credibility, such as police officers, emergency personnel, local media personalities, and weather forecasters, among others. For example, during the Red River floods of March–April 2009, certain locally known media personalities posted information via Twitter:

Public works director says a leak was found in one of the temporary dikes in Wahpeton. It’s been repaired. A backup dike’s been added.
Fargo Red is climbing a tenth of a foot per hour, now over 40.1 to 40.2, about to set a new record, surpassing 1897.

Both of these messages provide readers with information relating to the flood threat, and carry with them a degree of information trust because both sources were previously credentialed. However, we know that information seekers will continue to incorporate this information into the bricolage of information they are gathering, but the work that they must do to verify the source in this information class has, in a sense, been done for them.

Offering of credential-worthy information. Active credentialing on the part of the provider is also at work. Some providers are aware that they are communicating with a (sometimes) large audience and write to suggest credibility. People do this by providing links to proffered information; mentioning connections to already credentialed organizations and people; and referring to other indicators of status and access. An excerpt from recent research on the Red River Floods (Starbird et al. 2010) illustrates this last point, where, in a Twitter post, “river-fisher” (user names are pseudonyms) credentials anglers as an authoritative source in this kind of event:

more red river floods pics from anglers on the front line
http://tinyurl.com/anonymous

In the earlier generator example, User Y offers information that presumably could be understood best if one had local knowledge. She mentions a Home Depot in Slidell, a town about thirty miles from New Orleans; this demonstrates local knowledge. This author also self-monitors when she writes “at least they did last night,” indicating that she is uncertain about the present status of generator stock, and User X should be aware of the possibility that the generators may be sold out. User Y’s response to User X’s question is designed such that credibility is invoked.

Credentialing through information activity. What is also at work more than ever before in CMC is the ability to make inferences about credibility through other CMC features. Many CMC authors during mass emergencies are not previously credentialed. They instead sometimes emerge as spontaneous information providers. The burden is upon the seeker to assess credibility; one of the ways to do this is to construct the credibility through the provider’s information activity. Some providers anticipate the need to offer credentials through such means.

There are a number of ways an information seeker can verify the credentials of providers: from network affiliation, audience indicators, frequency of postings, demonstration of local knowledge, willingness to self-correct, and evidence of cross-verification among others.

Network affiliation. In social networking sites, for example, users display network affiliation by city, workplace or institution. When seeking information about an emergency in a specific location, affiliations—which can serve as an indirect offer of credibility—can be one basis for inferring credibility through proximity to the event. For example, during the aftermath of the 2007 Virginia Tech (VT) shootings, a Facebook participant affiliated with VT acted as the unofficial moderator of a discussion group that focused on compiling a list of the thirty-two victims. He self-selected to manage posts to the discussion group by making sure sources were cited and information was accurate (Vieweg et al. 2008).

Audience indicators. Large audience size can act as an indication of credibility. Sites with many participants, or people with many followers or connections, might be judged as being trusted by more people. Additionally, when large audiences converge online, there is more opportunity for receiving answers to questions and information correction and corroboration.

Posting frequency vis-à-vis content. The rates at which people post information can be used as part of the credibility composite. Consistency and frequency might carry value, if the source aims to be a hub. However, frequent posting alone does not indicate credibility; some simply regurgitate information that adds additional noise. Others establish competence through not only posting frequently but also offering reliable, pertinent information.

Self-correction and crosschecking. Credentialing can also occur through crosschecking. For example, after the Virginia Tech shootings, once list-building activity began in earnest, people quickly realized there was a need to offer sources for proffered information. An emergent norm began whereby participants posted sources along with victim names (Vieweg et al. 2008; Palen et al. 2009). Self-correction also adds to credibility. For example, a Twitter user who eventually gained popular attention during the 2007 Southern California Fires would correct information that he had previously posted in his high-frequency tweet stream (Sutton et al. 2008). If these self-corrections are prompted by audience feedback, the information provider is likely to gain more listeners and in turn the larger audience is likely to result in a better overall error correction system.

Significance of Credibility as Trust

Throughout the process of establishing credibility, the onus may fall on both the seeker and the provider of information differently. If one is already a local authority, he or she has an obligation to be as responsible as possible
informationally. However, the burden remains a constant on the seeker because as everyday analysts, they assume a degree of risk in whatever resulting actions they take. It is through both sociotechnical affordance and direct communication that people construct situational measures of helpfulness.

Establishing Information-Level Credibility

The Web in its entirety serves as a means of getting information in uncertain situations. Many people have the ability to come together around a common cause or need, and gather and disperse information quickly, but they do it across many forums and services. The problem at any one point in time—especially for sudden, unexpected events—is knowing where to look for it online.

This problem was highlighted by users of a social networking site during the 2009 Red River floods in the United States (Starbird et al. 2010). A specialized Ning forum was started specifically for the event, and within it, one participant began a discussion thread that asked others what Web sites they were regularly checking. She listed her own choices, which spurred others to respond by posting additional sites and references. In response, another participant posted about her frustrations with the need to sign in to the site and navigate the digital world:

> This signing up business is ridiculous—in the event of a real emergency and/or need for info—no ones nerves can take what it took to get into here. I’m in <local city> and already mine are shot. The ins and outs of the web are enough.

This example emphasizes the need for people to have access to more streamlined information that is easy to access and navigate.

However, access to information does not automatically imply utility. Determination of helpfulness of CMC information where the sources are numerous and uncertain requires some sort of corroboration from multiple sources. Sifting through the myriad of sources to do so is no small task, yet is at the core of everyday analysts’ work. In studies of social media use in mass emergency, people do emerge to perform focused analytic services, which include aggregation, redistribution, and synthesis of information (Shklovski et al. 2008; Vieweg et al. 2008). These people relieve some of the burden of seekers. Once the information brokers are identified as trustworthy and credible, they provide a way to systematize and focus the information-seeking process for others.

The everyday analyst must also corroboration information found elsewhere with the situation the analyst is experiencing at hand. Information that is helpful to one person may not be for another. In disasters that occur over an extended geographical area, there will be variance in information needs in locales within the region, even when distances are mere miles apart. In the September 2010 Four-mile Fire in Boulder County, residents in the mountainous area were under direct threat, but those only a few miles away were mostly assured of their safety. In such situations, information that is helpful to one person could be unhelpful or even damaging to another.

Absence and Unexpected Presence of Information

In critical situations in which time is of the essence, what is not known can be just as significant as what is known. If questions are asked in multiple online places or to multiple people, and answers are not forthcoming, this can be a telling indication of what is known. We turn to the Virginia Tech shootings for elaboration. At one point about the shootings and before the official release of the victims’ names, people came together on a Facebook group to let others know they were safe. There were also questions about the well-being of others. One person was asked about repeatedly on the site, as his whereabouts were unknown; no response was ever received to indicate his presence in other places online and elsewhere. The person was tragically a victim of the shooting; the lack of information about him and his digital inactivity suggested this likelihood before official information was released (Vieweg et al. 2008).

Going online can also provide unexpected help and information. During the 2009 Red River floods, some Twitter users innovatively created bots to automatically gather data from a U.S. geological survey sensor that monitors river levels. The sensor records the water level, updates a data table available on the Web, and then, in this case, user-generated scripts read that data and broadcast it via Twitter each time the table is updated (Starbird et al. 2010).

Temporal Viability: Timeliness and Currency

The establishment of credibility and trust is not unique to mass emergency. It is an analytic process that takes place in many aspects of social life. However, one factor that differentiates the trust and credibility building process in mass emergency from other situations is that of timeliness: Those experiencing an imminent flood or approaching wildfire do not have the luxury of spending a lot of time ascertaining if a source and information is credible and trustworthy. When a hurricane hits land or a river spills over its banks and puts residents at risk, information about the emergency is at a premium. Those in affected areas may need information about evacuation, risk to their homes, the status of friends and family, whether the area emergency personnel are equipped to provide services and much more.

However, during a mass emergency, information is constantly changing. Information that was previously helpful
might no longer be so a short time later. The currency of information is a factor to consider in mass emergency; indicators of information aging are important signals that can help people reach satisficing decisions.

IMPLICATIONS FOR SUPPORTING “EVERYDAY ANALYSIS”

The considerations and framework presented thus far have implications for software design and implementation. We envision a suite of software services to aid the everyday analyst in sifting and sorting through the deluge of changing digital information generated during a mass emergency. The scholarly basis for these ideas appears in an extended “visions” piece elsewhere (Palen et al. 2010); here we offer a pointed summary of design implications and ideas.

Our framework offers a series of characteristics by which people can judge “helpfulness” of information. We know that “accuracy” is the ideal, but not the measure, by which people take information and make use of it even—and especially—in disaster. Their goals can only be ones of satisficing. Therefore, our goals as designers of sociotechnical solutions are to process the heterogeneous and diffuse CMC-generated information in a manner that does not claim to produce the “right” answer. Instead we aim to collate information using useful indicators of credibility through automated synthesis and extrapolation. Here we present items for a research agenda that enhance our capabilities for such support.

Locating CMC Activity

Software services that quickly identify the places on the Web—social networking media and other online forums—where content about a particular emergency is actively being created are needed. These activity location services need to identify active local sources (media and other locally emergent CMC sites), as larger aggregators (such as Google) may not be able to update their indexes quickly enough for rapid response. In addition, these CMC location services must rely on what is known about people’s digital behavior for different types of crisis events.

Filtering and Sorting of CMC Content

Services are also needed that can rapidly analyze the activity of a CMC forum and then present filtered and annotated data back to users. This assists in assessment of trustworthiness and helpfulness of the information found there. Such services could look for and reveal the distribution of repeated information across people, time and sites. Annotated posts can be ordered using criteria and known situational factors supplied by the analyst, for example, asking that posts be ranked by the number of times it was replicated or ordering the posts of trusted users before the posts of unknown users.

Automated synthesis of credibility indicators. Another service required by the everyday analyst is one that assists with the ongoing task of assigning credibility to the members of a CMC forum. For instance, a service can use heuristics about the posting behavior of trustworthy individuals from past events to infer credibility about the posting behavior of unknown members acting within a current forum. In addition, it may be useful to have a service rapidly construct a “trust dossier” about a given member by searching for instances of trustworthy behavior by that person in other CMC forums in the past. It can also determine, for example, whether a person has a blog where the person posts regularly and thus has an online reputation to maintain. With this trust dossier, an analyst can assign a mark of trust (or nontrust), which then can propagate and alter previously filtered and sorted CMC posts.

Information corroboration. Support for corroboration of information across forums is also critical, and may require switching to secondary sources to confirm. For instance, confirmation that a cited street near a wildfire actually exists and is accurately geolocated can be cross-checked with public records. This helps the analyst infer that there is local knowledge on display in the CMC post; this contributes to an assessment of credibility.

Data Age and Comparison With Current State

A service that allows users to judge the validity of previously posted information based on updates to the current state of a crisis event is also needed. Thus, a post during a wildfire stating that a house is still standing needs to be judged based on information about where the fireline was when the post was generated and where it is when the post is being viewed at a later point in time.

Constraints and Feasibility

As we develop our framework and identify heuristics that will be of use to everyday analysts, we will start to build experimental prototypes that investigate the trade-offs and utility of the services described here. However, there are interesting software engineering and user interaction challenges that need to be overcome to produce such services. These challenges include (1) deep integration of these services into Web browsers, feed readers, and other devices used to access CMC content, and (2) the need to search social networking sites and microblogs in real time when these services impose restrictions on clients either via their terms of service or by rate-limiting the number of requests that can be made by user, application, or IP address. Other challenges include how to store this information and for how long: Twitter, for instance, cannot
store all the information that flows through it. If they cannot store everything, how should third-party tools retain enough information to enable the services discussed here? New techniques will be needed to summarize past information in a compact fashion before space limits require that the original information be deleted. Finally, this research agenda will require new research in fields such as natural language processing and network security/identity to make feasible some of the proposed services. We are actively working on all of these challenges.

CONCLUSION

The unifying theme of the framework for the assessment of “helpfulness” and the associated services proposed is clear: In highly contextualized situations where time is of the essence, people need support to consider the content across multiple sources of information. In the online arena, this means assessing the credibility and content of information distributed across CMC forums. Technical support can go a long way to help collate and inject metadata that make explicit many of the inferences that the everyday analyst must make to assess credibility and therefore helpfulness. However, our view is that the everyday analyst stays in control: It is not the job of the services and tools to make decisions but rather to allow their users to reach a decision as quickly and confidently as possible.

NOTE

1. According to Quantcast.com on September 15, 2009, Twitter.com receives over 28 million hits per month, Facebook.com over 95 million hits, and MySpace.com over 58 million hits.

REFERENCES

